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Max-Planck-lnstitut Metallfonchung. Heisenbergstrase 1, D-70569 Stuttgart, Germany 

Received 25 July 1994 

Abstract. An extension of the c lass id  Darboux transformations is applied to the one- 
dimensional Dirac equation in order to consmct yon Neumann-Wigner potentials allowing 
embedded eigenvalues. These potentials lead to a novel type of scattering problem with a trivial 
S-matrix composed of vanishing reflection coefficients and a uivial transmission coefficient. 
Related topics like the underlying symmetry of the D i m  equation and the connection with 
positon solutions of nonlinear evolution equations are discussed. 

1. Introduction 

The onedimensional Dirac equation with a Lorentz scalar (and/or vector) potential has 
recently received much attention. These studies cover such diverse areas as the traces 
of supersymmetry in one dimension [I], one-dimensional nuclear models (see, e.g., the 
references cited in [2]), technical questions on topics such as the existence of bound states 
or boundary conditions for singular potentials [3,4], the remnants of the well known chiral 
symmetry of the 3D Dirac equation in the massless limit 1.51, the construction of transparent 
potentials and the spectral properties resulting from the inherent supersymmetric structure 
[6] and relativistic tunnelling problems [7]. An inspection of the literature shows that most 
exactly solvable models for the one-dimensional Dirac equation employ the close relation 
between this equation and a pair of Schrodinger equations: the solution of these Schrodinger 
equations, in turn, is then based on well established algebraic techniques. 

It is shown in the present paper that these strategies can be considerably simplified 
by applying Darboux transformations (DT) directly to the Dirac equation. This approach 
requires nothing but an adaption of DT, which are well known from the theories of nonlinear 
waves to relativistic quantum mechanics. To be specific, the construction of long-ranged 
oscillatory potentials admitting bound states embedded in the continuum (BSEIC) will be 
presented below. These potentials turn out to be supertransparent; what is defined here 
as having a trivial S-matrix: they lead to vanishing (left and right) reflection coefficients 
while the transmission coefficients are identically equal to one (i.e. T = 1). This behaviour 
differs drastically from the solitonic potentials which have the same reflection coefficients 
but the transmission coefficient of which is a complex number of modulus one [SI. Thus 
the supemansparent potentials constructed here present another aspect of the problem of 
relativistic tunnelling phenomena (cf [7]), considerably increase the set of reflectionless 
potentials (cf [6]) and provide explicit examples of the symmetry of the one-dimensional 
Dirac equation discussed in 151. 

The paper is organized as follows: in the next section, the notation used below 
is set up and the DT underlying the present work are introduced. In section three, 
BsElC-bearing potentials for the one-dimensional Dirac equation are constructed and their 
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supertransparency is shown. The following sections contain remarks on related topics 
comprising: (i) the (super-)symmetry of the Dirac equation and the Miura transformation; 
(ii) the relation to positon solutions of nonlinear evolution equations. The paper is concluded 
by a short summary. 

2. Darboux transformations of the Dirac equation 

The one-dimensional massless Dirac equation is taken in the form 

(- iqaX = ,I@ (1) 

where appropriate unip have been chosen, the uj (i = 1 , 2 , 3 )  are Pauli spin-matrices and 
@ is a two-component spinor @ = (@, 9)'. It is, however, more convenient to work in a 
representation where the unitary involution r = iqo3  is diagonal. Thus, ( I )  is transformed 
to 

(-iu2a, + u1 U)@ = 1.6 (2) 

which will be the basis for the present discussion. 
The following facts and properties around equation (2) will be used from here on. 
(i) The DT constructed and employed here focus on (Z), but also hold, of course. 

upon simple modifications. for other forms of the Dirac equation. A survey of various 
representations and the corresponding transformations can be found, for example, in [SI. 

(ii) The scattering discussed below does not require the potential u ( x )  to be continuous. 
([9] contains a study of scattering for singular potentials in  the one-dimensional Dirac 
equation developed in the frame of nonlinear evolution equations.) 

(iii) The eigenvalues occur in pairs f h  (see e.g. 131). This corresponds to the fact that 
one can form two scattering solutions with the same energy moving to the right and to 
the left, respectively. The spectrum in the presence of a mass-term and the peculiarities 
connected with potentials having non-trivial spatial asymptotics is discussed in [3,4,8]. 

(iv) The Dirac equation (2) is related via supersymmetric quantum mechanics to a pair 
of Schrodinger equations reading 

H ~ @  = (-arx + vj)@ = (3) 

where the potentials V, in (3) and U in (2) satisfy ( j  = 1,Z) 

vj = U2 + (-l)'ux. (4) 

Therefore the concepts well known from Schrbdinger-theory have natural extensions to 
the relativistic case (cf [S, lo]). The Dirac Jost-solutions needed below, for instance, can 
be derived from SchrOdinger Jost-solutions. Restricting for definiteness to the positive 
eigenvalue, they can be written as 
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where ( I ) ,  (I) stand for solutions going to the left and to the right. (The two sets F ,  G 
correspond to the degeneracy.) The transmission coefficient T and the reflection coeEcient 
to the right R' are defined via 

(7) 

A similar definition holds for the reflection coefficient to the left. These coefficients 
constitute the S-matrix via 

TFO) = G(') + R'F('), 

T R' 
'=(RI T )  

(v) The supertransparency phenomenon is now defined by the property that the S-matrix 

In order to derive DT for the Dirac equation (Z), it is convenient to rewrite it in the form 
becomes the unit matrix, i.e. T = 1, R' = RI = 0. 

& = 04 (9) 

with 

A DT of (9) can now be defined as a linear transformation of the eigenfunctions 

4 = P$ (11) 

such that (9) is invariant under (11) upon replacing the potential U by the transformed 
potential 5.  A DT of (Z), written in the form (9), (lo), is derived from a convenient formal 
generalization of (9), (10) to (cf [ I l l )  

where @ is a 2 x 2 matrix-valued function whose columns are two solutions of the original 
equation (9). (IO) with eigenvalues &AI ,  A is a diagonal matrix with A = (Al ,  4.1) and 
U0.l are 2 x 2 matrices. These are determined by: (i) noting that the formal equation (12) 
contains, by construction, two copies of (9), (10) for &AI;  (ii) postulating equivalence of 
(9), (10) and (12); (iii) keeping in mind that the elements of U1 involve the eigenvalues 
&Al  while those of U0 involve the potential U, and (iv) comparing both equations. 

It turns out that (12) is invariant under the DT @ + @[1], with 

@ [ l ] = @ A - o @  U =@iAi@Y' .  (13) 

Here, 01 is a fixed solution of (12) with fixed eigenvalue A I : =  Ail, AI = ( A I ] .  -Ai l ) .  The 
coefficients of (12) transform according to 

U1[1]=U,  uo~l l=uo+lu1,ul  (14) 

where [ A ,  B ]  denotes the usual commutator A B  - B A .  

the following lines: 
Thus, one obtains DT of the Dirac equation (2) (and other forms) by proceeding along 
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(i) rewrite the Dirac equation in the form (9), (IO); 
(ii) determine the matrices UO, UI introduced in (12); 
(ui) determine a matrix solution r P ,  for n pair of eigenvalues (&All) and compute U: 

(iv) obtain the new potential U[]] and the corresponding eigenfunction from the DT (13) 

Denoting the special solution 0 1  of (13) by 

and 

and (14). 

. I = (  h *z ) 
(01 w 

one obtains, as a result of a one-step DT for the Dirac equation (Z), 

with 

The transformed eigenfunction is given by 

Choosing, for example, as starting functions for va = 0, the solutions 

= @IX + e-ihlr = -ieih~ + ie-iA,z 

and +z, fi correspondingly with A I  + -Al ,  leads to the new potential 

which gives, for AI  = ifil pure imaginary, the result 

-2fi1 
sinh(2filx) u [ l l =  . 

and for hl real, one obtains the singular periodic potential 

The corresponding eigenfunction is easy to calculate by inserting the general solution 
($, (0)' of (9) for U = 0 in the determinants listed above. 

An iteration of this ansatz is achieved either by direct computation or by the observation 
that the DT (13), (14) for the Dirac equation (2) as expressed in (15)-(18) is a simple 
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modification of the DT for the nonlinear Schrodinger equation formulated in [131, when 
time f is put equal to zero. Equations (131418) correspond to equations (8) in [131. The 
obvious generalization to an n-fold DT follows from the results given in [13] as 

A;-'@ 

k = 1,2 , .  . . ~ 2n 

i = 1 , .  . .,n + 1 
i = n + 2 , .  . . ,2n dz(2n) = det(cik), Cik = (25) 

i = 1 ,  .... n + 1 
i = n + 2 , .  . . ,2n + 1 

$'"+I:= @ %+I = P. 

(26) 

1 
dl(2n + 1 )  = det(Bin), Bik = 

k = 1.2.. . . ,2n + 1 

The expressions for -Ap[n],  Aq[n] require the interchange of p and @ in the 
numerators of these expressions. The supertransparent potentials constructed in the next 
section result in this frame from a two-fold DT for a pair of eigenvalues (A], -A.]) and 
(hz. -hz), and subsequently computing the limit 12 -P hl in this DT. 

The DT of the Dirac equation as discussed above are just one possibility offering certain 
computational advantages: for the sake of completeness some related approaches shall be 
listed here to conclude this section: probably the most closely related DT of Dirac-like 
systems, based on an ansatz for the matrix P defined in (1 1) .  have been formulated in [14] 
in the context of nonlinear evolution equations. A modest variation of this strategy starting 
from an appropriate ansatz for the Jost solutions can be extracted from the references cited 
in [15]. Very general DT, applicable to n x n first-order systems, can be found in [16,17]. 
An independent development of DT, directly related to the Dirac equation (2), has been 
presented in [18], where the method of intertwining has been transferred from the theory of 
solvable Schrodinger equations to the Dirac equation. 

3. Supertransparent potentials of the Dirac equation 

Supertransparent potentials of the Schriklinger equation are von Neumann-Wigner 
potentials, defined as 

a sin(kr + 7) 
r V ( r )  = + V , + V l  

which: (i) have a BSElC iff la1 > Ikl; and (ii) lead to phaseless scattering over the half-line 
(a trivial S-matrix over the full line). In (27), V, and !4 denote short-ranged and long- 
ranged non-oscillatory components of the potential V(r), respectively. The l / r  decay of 
the oscillatory component has been chosen for convenience in the calculation; in principle, 
it could be replaced by a decay N l /r" with 0 c 01 < I .  (A construction of supertransparent 
potentials for the Schrodinger equation with an arbitrary number of BSEIC via extended DT 
has been presented in [ 191). The relation between the Dirac and Schrodinger equations as 
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expressed in (2)-(4) indicates already that the concept of supertransparent potentials does 
carry over to the Dirac equation. 

The study of local BSEIC-bearing potentials for the Schrodinger equation started in 
1929 with [20] and many explicit examples not discussing supertransparency are known; 
the knowledge about such potentials for the Dirac equation, by contrast, is comparatively 
poor. (The ‘opposite’ question, i.e. the search for conditions assuring the non-existence of 
embedded eigenvalues for the Dirac equation, is under active study, as the references cited in 
[21] prove.) Explicit construction of BsElC-bearing potentials for the one-dimensional Dirac 
equation are extremely rare; early studies were devoted to conditions for the existence of 
embedded eigenvalues [22] and the corresponding asymptotics [23]. An interesting approach 
to this field based on asymptotic integration and singularities of the m-function can be found 
in [24], where many interesting references can also be found. (In [24], the author analyses 
very general classes of von Neumann-Wigner potentials defined only by their asymptotic 
properties and discusses the interplay between BSElC and resonances.) 

The simplest supertransparent potential for the Dirac equation one can obtain in the 
framework set up here results from putting n = 2 in the general n-fold DT discussed in the 
previous section, inserting the functions ( u g  = 0) 

(28) @. - e% + (o. - -ie@ + ie-W 
I -  I -  

with 

0, = h , ( x + x l ( h , ) )  

l m x l  = ImAj = 0 

j = 1, ..., 4 
(29) 

h~ = -XI 

in (23)-(26) and calculating the potential and eigenfunction(s) resulting from the limit 
h3 + Al. (This limit is well defined since the solutions ( @ 3 , ~ ) ~  and ( @ 4 , ~ 4 ) ~  are 
analytical functions of x and the spectral parameter.) Inserting the Taylor expansion of 
(@3, (o3)((@4, pa)) around the pointh3 = A l ( 4 . 3  = -11) into thedeterminant representation 
of DT given above, one obtains the potential 

h4 = -A3 

4hl (sin 28 - 211 y cos 20) 
sin2 2.0 - 4h:yZ 

u ( x )  = 

where 

0 = hl(X t X l @ l ) )  Y = @A, = X + X2 Xz =XI  + h ~ $ ~ , X l ( h i ) .  (31) 

This potential has obviously two first-order poles determined by 

sin’ 28 - 4h:y2 = 0 (32) 

whose exact location can be fine-tuned by the choice of the parameters A,, X I  and ~ 2 .  For 
x + &too, one obtains the asymptotic estimate 

i.e. potential (30)-depicted in figure I-is a von Neumann-Wigner potential. as defined in 
(27). In order to prove the supertransparency of (30), the functions 
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have to be calculated, again using the Taylor expansion for the limit &A3 -+ + A l .  (The 
details of this, in principle, straightforward calculation are omitted. It should be noted, 
however, that the proof of supertransparency is based on the possibility of introducing 
appropriate scattering data for the potentials considered here, which are-when defined over 
the full line-in general, singular; scattering data for singular potentials are not uniquely 
defined. The choice suggested above was made with the conditions on the existence of 
embedded eigenvalues discussed in [22-241 in mind.) 

.I 

' O K  5 V(X) - 

. ,  

0 . .  .... ..... ........ .,......... ' . . .  ..... ..... ..... ... .. 

Figure 1. The figure shows potential (30) for A I  = I. 
XI = n/4 .  X I  = 2. The two poles and the regular 
behaviour for x > 0. i.e. in the 'physical' region, are 

In the next step, the asymptotics for x 4 &CO of the eigenfunction obtained in the 
aforementioned limit have to be evaluated. From this asymptotic form, one obtains the 
Dirac Jost-solution, defined in (5),  (6), explicitly by comparison. These Jost-solutions, in 
nun, allow one to determine the transmission and reflection coefficients by inserting them 
into the corresponding definitions (i.e. (7)). Following this strategy, one obtains, in the 
present case, indeed, the result that the potential u(x) in (30) leads to vanishing reflection 
coefficients (R' = RI = 0), while the transmission coefficients are identically equal to 
one (i.e. T = 1). This result concludes the proof of supertransparency. An extension to a 
supertransparent potential with two BSElC is, in principle, straightforward; the only technical 
difficulty is the evaluation of 8 x 8 determinants for the potential and 9 x 9 determinants 
for the eigenfunction. (The strategy follows the same lines as before: put n = 4 in the DT, 
introduce the solutions ( $ j ,  vj)  of the Dirac equation for vanishing background potential 
uo = 0. and calculate the DT over the limit A3 + A I ,  Ag + hq while using the fact that the 
eigenvalues actually occur in pairs &Ax, k = 1.2,3.) The general result is not displayed 
here due to its length; an explicit form for ,I] = 1, A2 = 2 with all phases put identically to 
zero reads 

with 

f , ( x )  = 12(10Sx3 cos4x - 41 sin2r  + 45x2 s i n 2  + 49sinx cos'x - 87 sinx cos5x 

- 22 sin x cos9 x + 142 sinx cos3 x - 171x'sinx cos3 x 

+ 1SOcos2 x + 121 C O S ~ ~ X  - 1Sx cos'x - 219xcos4x -+ 632 cos6x - 18 

- 81x3 cos2 x )  (36) 
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h(x)  = 81 x4 - 1 80x2+64+ 180 COS' x - 1 I67 COS4 x + 1 5 3 4 ~ 0 8  x -603 COS' x - 1 2 C 0 ~ ' ~  x 

- 3 6 0 ~ ~  COS6 x + 162~ '  COS' x + 54x2 cos4 x + 324~' COS' x + 4 COS'2 x 

- 864xsinxcos'x + 1080xsinxcos5x - 216xsinxcos3x. (37) 

15 

10 

V(X) - - 
- 

Figure 2 demonstrates the remarkable symmetry of this potential with respect to the y-axis 
(apart from the complicated structure in the vicinity of the origin). 

Successive applications of DT following this strategy result in potentials with n BSElC. 
(The only technical difficulty is the increasing size of the determinants involved in the 
calculation.) As expected, these potentials are also supertransparent. More general 
supertransparent potentials can be obtained by allowing higher-order degeneracies in the 
eigenvalue, i.e. taking n distinct eigenvalues Aj and considering the solutions resulting 
from the limits ht A I ,  k = 2, .  . . , n. This ansatz requires the evaluation of 2n x 2n 
determinants, now containing partial derivatives up to order n in the spectral parameter. It 
is somewhat surprising that the resulting potentials can be divided in classes according to 
n even or n odd; it  turns out that only potentials with n odd are supertransparent. In this 
context, the potential u(x) = -211/sin(211x) of equation (22) is 'of order zero' since no 
derivative occurs. 

It should be noted that the formulation of DT developed in [14], when applied to the 
present problem, leads to identical results. The only difference results from the fact that the 
calculation of the eigenfunctions is based on a different strategy and is therefore slightly 
more involved than in the present approach. 

In the case of n simple BSEIC, as well as BSEIC obtained from higher-order degeneracies, 
the supertransparency of these potentials can be shown in two ways. The first possibility 
is direct calculation in complete analogy to the proof of supertransparency sketched above 
for potential (30) with one BSEIC. The logically straightforward, but technically involved, 
calculation can be modelled after the stragegy used in 1251 to prove the supertransparency 
of positons of the sine-Gordon equation. (Positons will be defined below). The second 
possibility is provided by the supersymmetry of the Dirac equation (2) manifesting itself in 
the connection between (2) and equations (3) and (4): loosely speaking, the S-matrix of the 
Dirac equation (2) follows from the S-matrices of the Schrodinger equations (3) and (4) (cf 
IS]). Thus, the proof of supertransparency boils down to the proofs for the corresponding 
potentials of the Schrodinger equation. (This correspondence between supertransparent 
potentials in the relativistic and non-relativistic cases is demonstrated in the next section for 

-10 

1 5  

- - 
Figure 2. By appropriate choice of the parmcters. the 
singularities of the 'WO-BSRC potential can obviously 
be located in vicinity ofthe origin. (The location of lhe 

- 
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Figure 3. The result of Miura transformation (4). with a 
‘t’ sign for potential (30), using the parameters AI = I ,  
X I  = r/2, x* = 2. 

potential (30).) The non-relativistic case, in turn, allows a variety of strategies for proving 
the supertransparency of these potentials, summarized in [19]. Probably the most elegant 
proof based on S-matrix theory can be found in [26]. (The possibility of S-matrix-based 
proofs is indicated in the conclusion, below). A proof of supertransparency for the non- 
relativistic case, based on direct calculation, can be deduced from the results presented 
in [27]. 

Figure 4. The second hliura transformation with lhe 
same parameters as in figure 3. The resulting figure 
agrees with figure I of 1191 as explained in the text. 

4. Supersymmetry and Miura transformations 

It has been observed by many authors that the Dirac equation (2) and the Schrodinger 
equations (3) and (4) are related via supersymmetric quantum mechanics (see, e.g., 
[1,6,8,19]). This formalism allows one to deduce the spectral properties of (2) from 
those of equations (3) and (4); the solution of these Schrodinger equations, in turn, can 
be based on well established algebraic techniques. Relation (4) between the potentials, 
here cited in the frame of supersymmetric quantum mechanics, is known in the theory of 
nonlinear evolution equations as the Miura transformation, relating solutions of the modified 
Korteweg de Vries (KdV) equation to those of the KdV equation [SI. It is now interesting to 
note that the Miura transformation (4) allows one to derive BsElc-bearing supertransparent 
potentials for the Schrodinger equation starting from the results for the Dirac equation. In 
the theory of nonlinear waves, by contrast, the properties of solitons are not automatically 
preserved but require an additional coordinate transformation. Taking the supertransparent 
potential (30) with one BSElC as an explicit example, this statement can be trivially verified. 
One obtains the following potential corresponding to the ‘one-positon potential’, discussed 
in detail in [27]: 

32h:sine(sine - 2hrycos9)  
(sin 28 - 2hl y)* 

V ( X )  = 

where 0 and y have been defined in (31). Figures 3 and 4 show the results of Miura 
transformation (4) with a ‘t’ and I - ’  sign, respectively; it is trivial to verify that these 
potentials correspond to: (i) inserting X I  = n/2, x z  = 2; and (ii) inserting X I  = n,  xz = 2 
in the one-positon potential above. Thus, the Miura transformation does indeed preserve 
the properties of supertransparent poteptids. 
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5. Symmetries of the Dirac equation 

The properties of supertransparent potentials are not only preserved in a transition from the 
Dirac equation (2) to the Schrodinger equation(s), but also in the opposite direction. When 
constructing supemansparent potentials for the Schrodinger equation, with n BSElC via DT. 
one starts, for a vanishing background, from the ansatz [19] 

w2 9 4 9hl= - 
Wl 

vo + V b I  = vo - ~(log(Wr)),x (39) 

where the Wronski determinants W, are constructed according to 

with 

@i =sin@ e i = ~ , ( x + x I ( K I . ) )  @=e"". (42) 

Eipnfunction 9 [ n ]  allows one to determine supertransparent potentials for the Dirac 
equation (2) via 

m = * a m g  @ [ n i ( ~ ) ) i ~ ~ .  (43) 

For n = 1, only K, has to be inserted in the Wronskians given above; it is a short calculation 
to show that one indeed obtains the supemansparent potential (30) by this strategy, (More 
details can be found in 1281.) 

The ambiguity in the zk sign in the log derivative leads immediately to the question of 
whether a symmetry exists which is responsible for this degree of freedom. The answer to 
this question has been given in [3,5]. It is a remnant of the chual symmetry of the Dirac 
equation in the massless limit when restricted to one dimension, as is done here; a particle 
moving in this potential is 'blind' to the sign of the potential (which can be verified by 
employing the '-' sign in the calculation). 

6. Positons and supertransparent potentials 

Dirac equation (2) appears in the linear representation of the modified KdV equation as 

(44) 

while a Schrodinger equation constitutes one part of the Lax pair of the KdV equation. The 
supertransparent potentials considered here lead. in this context, to a new type of nonlinear 
waves called positons (cf [ZS]); all DT derived above remain valid when the argument of 
the functions is augmenred by the corresponding time dependence. 

Positons of the modified KdV equation are weakly localized long-ranged singular 
solutions. The supemansparency manifests itself in the fact that they are completely 
transparent in interactions with other nonlinear waves: the positon-positon collision is 
a phaseless event, where the waves involved do not experience any phase shift; the soliton- 
positon collision leads to well defined phase shifts for the positon which is itself completely 
transparent to the soliton (see [27] for the KdV equation). 

2 U, = 6~ V, - v,, 
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7. Conclusions 

Supertransparent real potentials of the one-dimensional Dirac equation have been constructed 
and discussed. The technical tool needed for this purpose is a generalization and adaption 
of DT constructed some time ago in the theory of nonlinear waves. In order to obtain the 
so-called optical potentials for the Dirac equation including imaginary components, one has 
to take in the frame used here the form of the Dirac equation discussed in 131, When 
inverting the sign of the potential considered there and restricting the discussion to complex 
eigenvalues, one deals in fact with the Dirac equation used in the linear representation of 
the s in4ordon  equation. The DT leading, for example, to positon-soliton solutions of 
this nonlinear equation are, in  the present context, optical potentials upon setting the time t 
equal to zero. A discussion of the DT needed for this purpose can be found in [29] and the 
references cited therein. 

The supertransparency phenomenon has a natural explanation in terms of S-matrix theory 
when looking at the construction of these potentials: two continuum solutions of the free 
Dirac equation with different eigenvalues A,, 12 are plugged into the Darboux formalism and 
the limit h2 + A, is considered. This enforced degeneracy, in turn, leads to new potentials 
with a bound state in the continuum and trivial scattering, i.e. to a result predicted, in 
the context of the Schrodinger equation, as a consequence of 'accidental degeneracy of 
resonances' 1301. The corresponding results for the Schrijdinger equation follow directly 
from the unitarity of the S-matrix [19,30]; the present work demonstrates that the discussion 
in [30] can be extended to the relativistic case. Furthermore, the BsElC-bearing potentials, 
discussed here, guarantee a full transmission without imposing certain conditions on the 
parameters of the potential; the 'destructive interference of multiple reflected waves' cited 
in [7] in the context of discontinuous potentials is achieved in the present continuous case 
by the oscillating and slowly decaying character of the potential. 
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